

Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019

Owner of the declaration

KB Klimatbyrån AB

Product name

Chilled Beams

Declared unit

1 pc.

Product category /PCR

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Program holder and publisher

The Norwegian EPD foundation

Declaration number

NEPD-14045-14315

Registration Number

NEPD-14045-14315

Issue date

11.11.2025

Valid to

11.11.2030

Contents

General information	3
About Klimatbyrån	4
Product development	
Manufacturing	. 4
Operations	. 4
Solutions	. 4
Klimatbyrån Chilled beams	5
Reference product – OptimAir-S-1800	. 5
LCA: Calculation rules	6
System boundary	. 6
LCA: Scenarios and additional technical information	7
Transport from production place to assembly/user (A4)	. 7
Assembly (A5)	. 7
F (1:((C1 C3 C4)	7
End of Life (C1, C3, C4)	. ,
Transport to waste processing (C2)	

LCA: Results	8
System boundaries	8
Core environmental impact indicators	9
Resource use	9
End of life – Waste	9
End of life – Output flow	10
Information describing the biogenic	
carbon content at the factory gate	10
Additional requirements	10
Greenhouse gas emission from the use of	
electricity in the manufacturing phase	10
Additional environmental impact indicators required	
in NPCR Part A for construction products	
Dangerous substances	
Indoor environment	10
Included products and multiplication factors	11
Bibliography	12

General information

Product

Chilled beams (represented by OptimAir-S-1800).

Program holder

The Norwegian EPD Foundation

Post Box 5250 Majorstuen, 0303 Oslo, Norway *Phone:* +47 23 08 80 00 *E-mail:* post@epd-norge.no

Declaration Number

NEPD-14045-14315

This declaration is based on Product Category Rules

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Statements

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit

1 pc. OptimAir-S-1800

Declared unit with option

A1-A3, A4 A5, C1, C2, C3, C4, D

Functional unit

Not relevant. Use phase not included.

Verification

Independent verification of the declaration and data, according to ISO14025:2010

Owner of the declaration

KB Klimatbyrån AB

Travbanegatan 6, 211 41 Malmö, Sweden *E-mail*: info@klimatbyran.se

Manufacturer

Airvent Légtechnikai Zrt

6000 Kecskemét, Belsőnyír 150, Hungary *E-mail:* avkecskemet@airvent.hu

Place of production

Airvent Légtechnikai Zrt

6000 Kecskemét, Belsőnyír 150, Hungary

Management system

ISO 9001, ISO 14001 and ISO 50001

Organisation No.

556478-8428

Issue date

11.11.2025

Valid to

11.11.2030

Year of study

2025

Comparability

EPD's of construction products may not be comparable if they are not in compliance with EN 15804 and if the comparison is not made within a construction context.

The EPD has been worked out by

Kaspars Zudrags, BM Certification SIA

Silvia Vilčeková, SILCERT Ltd Independent verifier approved by EPD Norway

Approved

Hakon Hauran

About Klimatbyrån

We develop and supply ventilation products and demandcontrolled air management systems, prioritizing air quality, performance and energy efficiency.

Product development

 40 years of knowledge enables us to create indoor climate solutions, built to last and to meet future conditions.

Manufacturing

 Continuous improvement governs our production by prioritizing recyclability and sustainable material choices.

Operations

– Environmental awareness is an integral part of our operations, from warehousing and sales to final delivery.

Solutions

– The core of our solutions is to provide a healthy and energysaving indoor climate for all facility types and user needs.

Product development

Klimatbyrån governs over four decades of accumulated knowledge within indoor climate. Our heritage drives our commitment to provide functional and sustainable air technology solutions. Our average products feature a life cycle of 25 years. This affects our choices and strategies as they have an impact on both current and future generations. Continuous improvement and adaptation of our solutions is a must to meet our customers' needs and expectations in the best possible way.

Manufacturing

A key focus in both our product development and manufacturing plant is the increased use of sustainable methods, materials and processes without compromising on quality. By prioritizing environmentally friendly resources and transitioning to new components made from recycled raw materials, we strive to ensure that our production aims for reduced environmental impact and increased recyclability and reusability.

Operations

At Klimatbyrån, energy efficiency is at the core of all our operations. From transport and sales to warehouse management and delivery practices. All our branches are powered with renewable energy from Swedish hydro power and we offset all CO_2 emissions generated from our business travel and domestic transportation. In addition, all transports from our EU based production plant are made by intermodal transport, with over 70 % of the land route being made by rail. With over a hundred trucks shipped annually, this significantly reduces our carbon footprint across Europe.

Solutions

Our goal is to supply durable, high-quality ventilation products, designed and manufactured with care, that improves indoor comfort and air quality of the building. Demand-controlled systems, that supply and regulate air distribution, have become a central key in the indoor-climate industry. Our solutions manage and secure a healthy indoor climate and improved energy efficiency, taking both facility operations, occupant needs and seasonal conditions into account.

Klimatbyrån chilled beams

Reference product

OptimAir-S-1800

Product description

Our chilled and climate beams are designed to provide energy-efficient heating, cooling, and ventilation across a wide range of commercial and institutional buildings. Each unit consists of a steel plenum box and a high-performance heat exchanger made of copper tubes with aluminium fins. The manufacturing process and choice of materials are largely standardized across the product range, ensuring consistent quality and performance while allowing for multiple configurations to suit different capacity levels, mounting types, and air distribution requirements. This Environmental Product Declaration (EPD) presents the average environmental performance of our chilled and climate beam range, as summarised in the section **Included products and multiplication factors**.

The Life Cycle Assessment (LCA) is based on product-specific data for the representative model OptimAir S-1800. As one of our most widely used beams, the S-1800 provides a balanced representation of the full range (1200–3000 mm) in terms of size, material composition, and production impact. It therefore serves as a reliable reference point for assessing the environmental characteristics of the entire product family.

OptimAir-S-1800 - Product specification

Materials	kg	%
Steel	22.1	73,6
Aluminium	4.5	14,9
Copper	2.5	8,4
Powder coating	0.7	2,3
Polyamide	0.1	0,4
EPDM	0.1	0,4
TOTAL	30.0	
Packaging – corrugated board	1.1	

Description and function

OptimAir is a water and air based induction unit with bidirectional air diffusion, recommended for a wide range of commercial applications, such as office buildings, shopping malls, retail stores, restaurants, and hotels, where a combination of ventilation, cooling, and/or heating is required. OptimAir is primarily designed for false-ceiling installation, but can be supplied with an optional coanda frame for visible mounting. The unit is available with two plenum alternatives - normal (S) or higher (L) air volume, along with a high-performance heat exchanger to efficiently meet the cooling or heating demands of the conditioned space.

For added flexibility, OptimAir can be supplied with adjustable nozzles that allow reconfiguration of the supply airflow even after installation. The nozzles are thoughtfully positioned above

the heat exchanger to maximize the coil's efficiency and optimally mix the primary supply air with the induced room air. This ensures a well-conditioned indoor environment, enhancing both thermal and acoustic comfort for residents. For additional efficiency, OptimAir can be equipped with a digital controller, developed for DCV (Demand-Controlled Ventilation) solutions.

Standard sizes (W x L, mm)

	` '
600 x 1200	600 x 1800
600 x 2100	600 x 2400
600 x 3000	

Airflow range

13-88 l/s (47-317 m³/h)

Materials

The visible front panel, outer frame, plenum box, and connection spigot are all made of galvanized steel sheet. The fold-down front panel and all other visible surfaces, are powder-coated in white RAL 9003 (30% gloss). The duct connection spigot is fitted with an EPDM rubber seal to ensure airtight performance. The heat exchanger consists of copper tubes with aluminium fins, while the adjustable air deflectors are made of durable polyamide plastic.

Market

Europe

Reference service life

> 25 years

LCA: Calculation rules

Declared unit

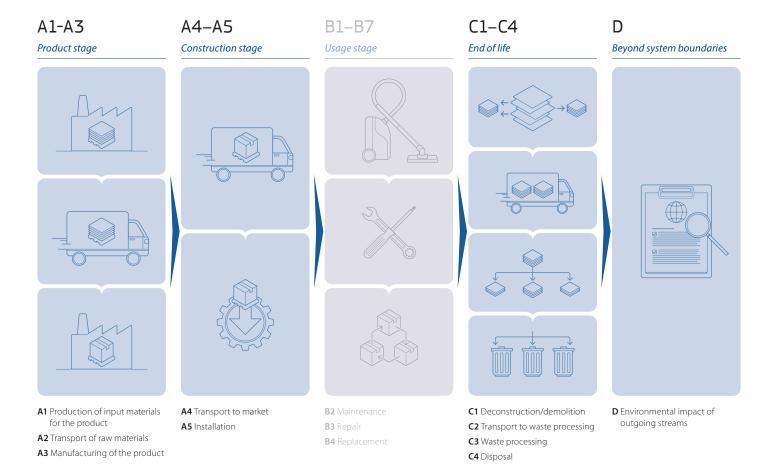
One chilled beam – OptimAir-S-1800 (mass 30.0 kg). Conversion factor from mass to units – 0.033.

Cut-off criteria

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation

Allocation is done following EN 15804+A2:2019 guidelines, with incoming energy, water, and waste generated on-site being evenly distributed among all products through mass allocation. The environmental impacts of producing recycled materials are attributed to the primary product in which they are utilized. Additionally, the recycling process and transportation of materials are taken into account in this analysis.


Data quality

Specific data for the product composition are provided by our manufacturer, Airvent Légtechnikai Zrt. They represent the production of the declared product and were collected for EPD development to year 2025-01-01 – 2025-05-31.

Materials	Source	Data quality	Year
Steel	ecoinvent 3.10.1	Database	2025
Aluminum	ecoinvent 3.10.1	Database	2025
Copper	ecoinvent 3.10.1	Database	2025
Coating	ecoinvent 3.10.1	Database	2025
Plastic	ecoinvent 3.10.1	Database	2025
EPDM	ecoinvent 3.10.1	Database	2025
Corrugated board	ecoinvent 3.10.1	Database	2025

System boundary

Cradle to gate with options, modules C1–C4, module D (A1–A3 + A4 + A5 + C + D).

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Energy sources of the electricity used in manufacturing processes of module A3 are modeled using the mix of electricity, the average $0.456 \, \mathrm{kg} \, \mathrm{CO}_2$ eq./kWh. A4: Transport scenarios include EURO 6 truck transport for 307 km, sea ferry 158 km, train 747 km. A5. The energy consumption of A5 and C1 model is considered negligible and module A5 includes only packaging utilization. C1: No loads in C1 have been generated as manual dismantling. C2: Transport to waste treatment site after dismantling usin g EURO 6 truck average (100 km assumed). C3: Assumed as 90% of a chilled beam is recycled. C4: Assumed as 10% of chilled beam materials goes to landfill. D: Modeled as 90% of chilled beam is recycled.

Transport from production place to assembly/user (A4)

Туре	Capacity utilisation (incl. return) [%]	Type of vehicle	Distance KM	Fuel/Energy consumption	Value [l/t]
Truck	36.7	lorry 16-32 metric ton, EURO6	307	0.043	13.20
Railway	50	rail	747	0.002	1.49
Boat	50	ship	158	0.030	4.74

Assembly (A5)

	Unit	Value
Packaging cardboard, recycled – 89%	kg	0.35
Packaging cardboard, landfild – 5.5%	kg	0.02
Packaging cardboard, incertation – 5.5%	kWh	0.02
Packaging plastic, recycled – 40%	kg	0.35
Packaging plastic, landfild – 23%	kg	0.02
Packaging plastic, incertation – 37%	kWh	0.76
Packaging wood, recycled – 32%	kg	0.35
Packaging wood, landfild – 38%	kg	0.02
Packaging wood, incertation – 30%	kWh	10.95
Packaging wood, recycled – 32% Packaging wood, landfild – 38%	kg kg	0.35

End of Life (C1, C3, C4)

	Unit	Value
Treatment of waste reinforcement steel, recycling	kg	19.9
Treatment of waste reinforcement aluminum, recycling	kg	4.0
Treatment of waste copper, recycling	kg	1.5
Treatment of waste plastic, municipal incineration	kg	0.9
Treatment of scrap steel, landfill	kg	2.2
Treatment of scrap aluminum, landfill	kg	0.5
Treatment of scrap coper, landfill	kg	1.0

Transport to waste processing (C2)

Type	Capacity utilisation (incl. return) [%]	Type of vehicle	Distance KM	Fuel/Energy con- sumption	Value [l/t]
Truck	36.7	Lorry 16-32 metric ton, EURO5	100	0.043	13.20

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Substitution of steel production	kg	19.9
Substitution of aluminum production	kg	4.0
Substitution of copper production	kg	1.5
Substitution of electricity production	MJ	5.16
Substitution of thermal energy production	MJ	7.08

LCA: Results

System boundaries

X=included, MID=module not declared, MIR=module not relevant

Product stage			mbly ige		Use stage				E	nd of l	ife stag	je	Beyond system boundaries			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	Χ	X	X	MID	MID	MID	MID	MID	MID	MID	Χ	Χ	Х	Χ	X

Core environmental impact indicators

Parameter	Unit	A1-A3	A4	A5	C 1	C2	C 3	C4	D
GWP-total	kg CO ₂ -eq.	1.54E+02	3.19E+00	7.14E-01	0.00E+00	1.20E+00	2.74E+00	3.14E-02	-6.19E+01
GWP-fossil	kg CO ₂ -eq.	1.53E+02	3.18E+00	1.88E-01	0.00E+00	1.20E+00	2.74E+00	3.15E-02	-6.06E+01
GWP-biogenic	kg CO ₂ -eq.	-2.38E-01	1.12E-03	5.26E-01	0.00E+00	2.62E-04	-1.53E-03	-3.93E-05	-6.85E-01
GWP-IuIAC	kg CO ₂ -eq.	8.93E-01	1.93E-03	4.41E-05	0.00E+00	5.30E-04	7.49E-04	2.74E-05	-6.68E-01
ODP	kg CFC11-eq.	3.17E-05	5.16E-08	4.66E-10	0.00E+00	1.68E-08	8.45E-09	7.89E-10	-5.88E-07
AP	mol H+ eq.	1.06E+00	2.81E-02	2.01E-04	0.00E+00	4.00E-03	7.45E-03	2.08E-04	-5.08E-01
EP-freshwater	kg N eq.	2.83E-01	3.15E-04	9.02E-06	0.00E+00	9.30E-05	3.77E-04	3.43E-06	-2.01E-01
EP-marine	kg N eq.	2.73E-01	8.39E-03	1.99E-04	0.00E+00	1.30E-03	1.82E-03	8.24E-05	-1.17E-01
EP-terrestrial	mol N eq.	2.23E+00	9.21E-02	7.62E-04	0.00E+00	1.41E-02	1.98E-02	8.41E-04	-1.51E+00
POCP	kg NMVOC eq.	6.03E-01	2.88E-02	2.51E-04	0.00E+00	5.60E-03	5.76E-03	2.90E-04	-3.83E-01
ADP-minerals & metals*	kg Sb eq.	3.58E+00	8.52E-06	1.76E-07	0.00E+00	3.87E-06	4.09E-05	6.24E-08	-3.32E-03
ADP-fossil*	MJ	2.05E+03	4.22E+01	4.29E-01	0.00E+00	1.68E+01	1.33E+00	0.00E-00	-7.65E+02
WDP*	m^3	1.12E+02	2.78E-01	1.56E-02	0.00E+00	7.87E-02	2.77E-01	6.10E-03	-5.51E+01

GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; See "additional requirements" for indicator given as PO4 eq. EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-M&M: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water consumption.

Reading example: $9,0 E-03 = 9,0*10^{-3} = 0,009$

Resource use

Parameter	Unit	A1-A3	A4	A 5	C 1	C2	C 3	C4	D
RPEE	MJ	4.57E+02	1.12E+00	-1.51E+01	0.00E+00	2.31E-01	1.41E+00	1.08E-02	-2.15E+02
RPEM	MJ	1.92E+01	0.00E+00	-1.68E+01	0.00E+00	0.00E+00	-2.18E+00	-2.43E-01	4.91E+00
TPE	MJ	4.77E+02	1.12E+00	-3.19E+01	0.00E+00	2.31E-01	-7.69E-01	-2.32E-01	-2.10E+02
NRPE	MJ	2.04E+03	4.22E+01	-4.71E+00	0.00E+00	1.68E+01	-2.45E+01	6.85E-01	-7.98E+02
NRPM	MJ	1.84E+01	0.00E+00	-5.92E+00	0.00E+00	0.00E+00	-1.12E+01	-1.25E+00	3.30E+01
TRPE	MJ	2.06E+03	4.22E+01	4.29E+01	0.00E+00	1.68E+01	1.33E+01	0.00E-00	-7.65E+02
SM	kg	7.24E+00	3.21E-02	5.89E-04	0.00E+00	7.53E-03	9.80E-03	2.01E-04	2.43E+01
RSF	MJ	8.44E-02	2.06E-04	4.49E-06	0.00E+00	9.58E-05	4.48E-04	3.63E-06	-4.69E-03
NRSF	MJ	4.45E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
W	m³	-8.98E-01	7.15E-03	-8.50E-04	0.00E+00	2.25E-03	6.40E-03	-1.20E-03	-1.19E+00

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - waste

Parameter	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
HW	kg	3.95E+01	1.06E-01	4.93E-03	0.00E+00	2.93E-02	9.02E-02	2.00E-03	-4.45E+00
NHW	kg	5.41E+03	1.91E+00	1.71E+00	0.00E+00	5.48E-01	2.81E+00	2.47E+00	-1.41E+02
RW	kg	6.07E-03	1.79E-05	3.40E-07	0.00E+00	3.36E-06	1.49E-05	1.78E-07	-1.56E-03

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life – output flow

Parameter	Unit	A1-A3	A4	A5	C 1	C2	C 3	C4	D
CR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR	kg	0.00E+00	0.00E+00	4.12E-02	0.00E+00	0.00E+00	2.58E+01	0.00E+00	0.00E+00
MER	kg	9.92E-04	0.00E+00	1.56E-03	0.00E+00	0.00E+00	9.00E-01	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	4.49E-02	0.00E+00	0.00E+00	5.16E+00	0.00E+00	0.00E+00
ETE	MJ	0.00E+00	0.00E+00	6.12E-02	0.00E+00	0.00E+00	7.08E+00	0.00E+00	0.00E+00

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; EEE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy; ETE Exported thermal energy recovery; ETE Exported electric energy recovery; ETE Exported electric energy recovery; ETE Exported electric energy recovery energy recovery energy recovery energy recovery exported electric energy recovery en

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	0.44

Additional requirements

Greenhouse gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity production, hard coal	ecoinvent 3.10.1	1.1	g CO ₂ eq./kWh
Electricity production, nuclear, pressure water reactor	ecoinvent 3.10.1	0.0071	g CO ₂ eq./kWh
Electricity production, photovoltaic	ecoinvent 3.10.1	0.0833	g CO ₂ eq./kWh
Electricity production, hydro, run-of-river	ecoinvent 3.10.1	0.0044	g CO ₂ eq./kWh

Additional environmental impact indicators required in NPCR Part A for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantanious oxidation. GWP-IOBC is also reffered to as GWP-GHG in context to Swedish public procurement legislation.

Indicator	Unit	A1-A3	A4	A5	C 1	C2	C3	C4	D
GWP-IOBC	kg CO ₂ eq.	1.54E+02	3.19E+00	1.88E-01	0.00E+00	1.20E+00	2.74E+00	3.15E-02	-6.12E+01

GWP-IOBC Global warming potential calculated according to the principle of instantanious oxidation.

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

The product meets the requirements for low emissions.

Included products and multiplication factors

The multiplication factors in the table below can be used to scale LCA data for another product or size.

Name	Factor
CornerAir	
CornerAir-1500	
CornerAir-1800	
CornerAir-2100	
CornerAir-2400	
CornerAir-2700	
CornerAir-3000	
FacadeAir	
Facade Air-600	0,41
Facade Air-800	
Facade Air-1000	
FacadeAir-1200	
-acadeAir-1500	0,89
FreeAir / AQUATiQ-F	
FreeAir-1500 / AQUATiQ-F-15 / AQFA-15	50,78
FreeAir-1800 / AQUATiQ-F-18 / AQFA-18	80,92
FreeAir-2100 / AQUATiQ-F-21 / AQFA-2	l
FreeAir-2400 / AQUATiQ-F-24 / AQFA-24	4
FreeAir-2700 / AQUATiQ-F-27 / AQFA-2	7
FreeAir-3000 / AQUATiQ-F-30 / AQFA-3	0
HotelAir / AQUATiQ-H	
HotelAir-800 / AQUATiQ-H-08 / AQHA-	.08
HotelAir-1000 / AQUATiQ-H-10 / AQHA	-10
HotelAir-1200 / AQUATiQ-H-12 / AQHA	,
HotelAir-1400 / AQUATiQ-H-10 / AQHA	-14

Name	Factor
OptimAir-DF / AQUATiQ-OD	
OptimAir-DF-600 / AQUATiQ-OD-06 / AQOAD-06	0,38
OptimAir-DF-1200 / AQUATiQ-OD-12 / AQOAD-12	0,75
OptimAir-DF-1800 / AQUATiQ-OD-18 / AQOAD-18	0,92
OptimAir-L / AQUATiQ-OL	
OptimAir-L-600 / AQUATiQ-OL-06 / AQOAL-06	0,35
OptimAir-L-1200 / AQUATiQ-OL-12 / AQOAL-12	0,71
OptimAir-L-1800 / AQUATiQ-OL-18 / AQOAL-18	1,07
OptimAir-L-2400 / AQUATiQ-OL-24 / AQOAL-24	1,42
OptimAir-L-3000 / AQUATiQ-OL-30 / AQOAL-30	1,77
OptimAir-S / AQUATIQ-OS	0.67
OptimAir-S-1200 / AQUATiQ-OS-12 / AQOAS-12	0,6/
OptimAir-S-1800 / AQUATiQ-OS-18 / AQOAS-18	1,00
OptimAir-S-2400 / AQUATiQ-OS-24 / AQOAS-24	1,33
OptimAir-S-3000 / AQUATiQ-OS-30 / AQOAS-30.	
PremiAir / AQUATiQ-P	
PremiAir-600 / AQUATiQ-P-06 / AQPA-06	0.49
PremiAir-1200 / AQUATiQ-P-12 / AQPA-12	
PremiAir-18000 / AQUATiQ-P-18 / AQPA-18	
PremiAir-HF / AQUATiQ-PHF	
PremiAir-HF-1200 / AQUATiQ-PHF-12 / AQPAH-12	0,98

Bibliography

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations

- Principles and procedures

ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines

EN 15804:2012+A2:2019 Sustainability of construction works – Environmental product declarations

- Core rules for the product category of construction products.

NPCR Part A Construction products and services. Ver. 2.0. March 2021, EPD-Norge. *NPCR 026 Part B* for Furniture. Ver. 2.0 March 2022, EPD-Norge.

LCA background report 2025-06-02.

	Program Operator							
	The Norwegian EPD Foundation	tel	+47 23 08 80 00					
@ and narway	Post Box 5250 Majorstuen, 0303 Oslo	e-mail	post@epd-norge.no					
© epd-norway	Norway	web	www.epd-norge.no					
	Publisher	tel	+47 23 08 80 00					
	The Norwegian EPD Foundation							
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail	post@epd-norge.no					
	Norway	web	www.epd-norge.no					
	Owner of the declaration							
KB KLIMATBYRÅN	KB Klimatbyrån AB	tel	+46 (0)40-671 27 50					
REMAINIAIDIRAN	Travbanegatan 6, SE-211 41 Malmö.	e-mail	info@klimatbyran.se					
	Sweden	web	www.klimatbyran.se					
	Author of the life cycle assessment							
bm	K. Zudrags	tel	+371 67772135					
certification	BM Certification SIA	e-mail	info@bmcertification.com					
	Latvia	web	www.bmcertification.com					
ECO PLATFORM	ECO Platform	web	www.eco-platform.org					
VERIFIED	ECO Portal	web	ECO Portal					

EPD for the best environmental decision

